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Table 1 

Abstract  

In the first of a series of four articles the authors explain the statistical concepts 
of hypothesis testing and p values.In many clinical trials investigators test a null 
hypothesis that there is no difference between a new treatment and a placebo or 
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between two treatments. The result of a single experiment will almost always 
show some difference between the experimental and the control groups. Is the 
difference due to chance, or is it large enough to reject the null hypothesis and 
conclude that there is a true difference in treatment effects? Statistical tests yield a 
p value: the probability that the experiment would show a difference as great or 
greater than that observed if the null hypothesis were true. By convention, p values 
of less than 0.05 are considered statistically significant, and investigators conclude 
that there is a real difference. However, the smaller the sample size, the greater the 
chance of erroneously concluding that the experimental treatment does not differ 
from the control -- in statistical terms, the power of the test may be inadequate. 
Tests of several outcomes from one set of data may lead to an erroneous 
conclusion that an outcome is significant if the joint probability of the outcomes is 
not taken into account. Hypothesis testing has limitations, which will be discussed 
in the next article in the series. 

 
Clinicians are often told that they are supposed to not only read journal articles, 

but also understand them and make a critical assessment of their validity [1,2]. 
Clinicians may offer better care if they are able to appraise critically the original 
literature and apply the results to their prac-tice [3,4]. Criteria for assessing the 
strength of the methods reported in medical articles can provide clinicians with 
guidance in recognizing the strengths and weaknesses of clinical research [5,6]. 
However, such guidelines tend to make only passing reference to statistical 
methods or interpretation of study conclusions based on statistics. 

Some authors have attempted to fill this gap [7,8,9,10,11]. This series has modest 
goals. We do not intend, for instance, to enable readers to identify or understand 
the statistical tests used to calculate a p value, but we are interested in helping them 
interpret the p values generated by such tests. We wish to allow readers to 
understand the conclusions derived from statistical procedures that they find in 
clinical articles. This series complements our guides to using the medical literature, 
which focus on study design and application of study results [12]. 

COMMONLY USED STATISTICAL TECHNIQUES  

We chose to address only the techniques and approaches that clinicians most 
commonly face. To identify these, we reviewed recent contributions to three major 
medical journals: original, special and review articles in the New England Journal 
of Medicine (1991; 324: 1-352); diagnosis and treatment, review, and academia 
articles in the Annals of Internal Medicine (1991; 114: 345-834), and original 
research, current review, and clinical and community studies articles in the 
Canadian Medical Association Journal (1991; 144: 623-1265). Two of us (N.H. 
and R.J.) independently reviewed 100 articles and noted the statistical techniques 
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used. Discrepancies between the findings of the two reviewers were resolved by 
consensus. 

The results of this review Table 1 are consistent with those of a similar review 
[13]. Although a wide variety of statistical techniques were reported, hypothesis 
tests, confidence intervals, p values and measures of association occurred most 
frequently. On the basis of this information our series will deal with hypothesis 
testing, estimation, measures of association, survival analysis, and regression and 
correlation. Examples will be drawn from the articles surveyed and others. 

 

 
Table 1. Frequency of statistical concepts and techniques in 100 articles published in three medicals journals 

HYPOTHESIS TESTING  

When we conduct a trial of a new treatment we can assume that there is a true, 
underlying effect of the treatment that any single experiment can only estimate. 
Investigators use statistical methods to help understand the true effect from the 
results of one experiment. For some time the paradigm for statistical inference has 
been hypothesis testing. The investigator starts from what is called a "null 
hypothesis": the hypothesis that the statistical procedure is designed to test and, 
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possibly, disprove. Typically, the null hypothesis is that there is no difference 
between outcomes as a result of the treatments being compared. In a randomized 
controlled trial to compare an experimental treatment with a placebo, the null 
hypothesis can be stated: "The true difference in the effects of the experimental and 
control treatments on the outcome of interest is zero." 

For instance, in a comparison of two vasodilator treatments for patients with 
heart failure, the proportion of patients treated with enalapril who survived was 
compared with the proportion of survivors among patients given a combination of 
hydralazine and nitrates [14]. We start with the assumption that the treatments are 
equally effective and stick to this position unless the data make it untenable. The 
null hypothesis in the vasodilator trial could be stated: "The true difference in the 
proportion surviving between patients treated with enalapril and those treated with 
hydralazine and nitrates is zero." 

In the hypothesis-testing framework we ask Are the observed data consistent 
with this null hypothesis? The logic behind this approach is the following. Even if 
the true difference in effect is zero, the results observed will seldom be exactly the 
same; that is, there will be some difference between outcomes for the experimental 
and control groups. As the results diverge farther and farther from the finding of no 
difference, the null hypothesis that there is no difference between treatments 
becomes less and less credible. If the difference between results in the treatment 
and control groups becomes large enough, the investigator must abandon belief in 
the null hypothesis. An explanation of the role of chance helps demonstrate this 
underlying logic. 

THE ROLE OF CHANCE  

Imagine a fair or "unbiased" coin in which the true probability of obtaining 
heads in any single coin toss is 0.5. If we tossed such a coin 10 times we would be 
surprised if we saw exactly five heads and five tails. Occasionally, we would get 
results very divergent from the five-to-five split, such as eight to two, or even nine 
to one. Very infrequently 10 coin tosses would result in 10 consecutive heads or 
tails. 

Chance is responsible for this variation in results. Games of chance illustrate the 
way chance operates. On occasion, the roll of two unbiased dice (with an equal 
probability of rolling any number between one and six) will yield two ones, or two 
sixes. The dealer in a poker game will, on occasion (and much to the delight of the 
recipient), dispense a hand consisting of five cards of a single suit. Even less 
frequently, the five cards will not only belong to a single suit but will also be 
consecutive. 

Chance is not restricted to the world of coin tosses, dice and card games. If a 
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sample of patients is selected from a community, chance may result in unusual 
distributions of disease in the sample. Chance may be responsible for a substantial 
imbalance in the rates of a particular event in two groups of patients given different 
treatments that are, in fact, equally effective. Statistical inquiry is geared to 
determining whether unbalanced distributions can be attributed to chance or 
whether they should be attributed to another cause (treatment effects, for example). 
As we will demonstrate, the conclusions that may be drawn from statistical inquiry 
are largely determined by the sample size of the study. 

THE P VALUE  

One way that an investigator can go wrong is to conclude that there is a 
difference in outcomes between a treatment and a control group when, in fact, no 
such difference exists. In statistical terminology, erroneously concluding that there 
is a difference is called a Type I error, and the probability of making such an error 
is designated alpha. Imagine a situation in which we are uncertain whether a coin is 
biased. That is, we suspect (but do not know for sure) that a coin toss is more likely 
to result in heads than tails. We could construct a null hypothesis that the true 
proportions of heads and tails are equal. That is, the probability of any given toss 
landing heads is 0.5, and so is the probability of any given toss landing tails. We 
could test this hypothesis in an experiment in which the coin is tossed a number of 
times. Statistical analysis of the results would address whether the results observed 
were consistent with chance. 

Let us conduct a thought experiment in which the suspect coin is tossed 10 
times, and on all 10 occasions the result is heads. How likely is this result if the 
coin is unbiased? Most people would conclude that this extreme result is highly 
unlikely to be explained by chance. They would therefore reject the null hypothesis 
and conclude that the coin is biased. Statistical methods allow us to be more 
precise and state just how unlikely it is that the result occurred simply by chance if 
the null hypothesis is true. The probability of 10 consecutive heads can be found 
by multiplying the probability of a single head (0.5) by itself 10 times: 0.5 x 0.5 x 
0.5 and so on. Therefore, the probability is slightly less than one in 1000. In an 
article we would likely see this probability expressed as a p value: p < 0.001. What 
is the precise meaning of this p value? If the null hypothesis were true (that is, the 
coin was unbiased) and we were to repeat the experiment of the 10 coin tosses 
many times, 10 consecutive heads would be expected to occur by chance less than 
once in 1000 times. The probability of obtaining either 10 heads or 10 tails is 
approximately 0.002, or two in 1000. 

In the framework of hypothesis testing the experiment would not be over, for we 
have yet to make a decision. Are we willing to reject the null hypothesis and 
conclude that the coin is biased? How unlikely would an outcome have to be 
before we were willing to dismiss the possibility that the coin was unbiased? In 
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other words, what chance of making a Type I error are we willing to accept? 
This reasoning implies that there is a threshold probability that marks a boundary; 
on one side of the boundary we are unwilling to reject the null hypothesis, but on 
the other we conclude that chance is no longer a plausible explanation for the 
result. To return to the example of 10 consecutive heads, most people would be 
ready to reject the null hypothesis when the observed results would be expected to 
occur by chance less than once in 1000 times. 

Let us repeat the thought experiment with a new coin. This time we obtain nine 
tails and one head. Once again, it is unlikely that the result is due to chance alone. 
This time the p value is 0.02. That is, if the null hypothesis were true and the coin 
were unbiased, the results observed, or more extreme than those observed, (10 
heads or 10 tails, 9 heads and 1 tail or 9 tails and 1 head) would be expected to 
occur by chance twice in 100 repetitions of the experiment. 

Given this result, are we willing to reject the null hypothesis? The decision is 
arbitrary and a matter of judgement. However, by statistical convention, the 
boundary or threshold that separates the plausible and the implausible is five times 
in 100 (p = 0.05). This boundary is dignified by long tradition, although other 
choices of a boundary value could be equally reasonable. The results that fall 
beyond this boundary (i.e., p < 0.05) are considered "statistically significant." 
Statistical significance, therefore, means that a result is "sufficiently unlikely to be 
due to chance that we are ready to reject the null hypothesis." 

Let us repeat our experiment twice more with a new coin. On the first repetition 
eight heads and two tails are obtained. The p value associated with such a split tells 
us that, if the coin were unbiased, a result as extreme as eight to two (or two to 
eight), or more extreme, would occur by chance 11 times in 100 (p = 0.11). This 
result has crossed the conventional boundary between the plausible and 
implausible. If we accept the convention, the results are not statistically significant, 
and the null hypothesis is not rejected. 

On our final repetition of the experiment seven tails and three heads are 
obtained. Experience tells us that such a result, although it is not the most common, 
would not be unusual even if the coin were unbiased. The p value confirms our 
intuition: results as extreme as this split would occur under the null hypothesis 34 
times in 100 (p = 0.34). Again, the null hypothesis is not rejected. 

Although medical research is not concerned with determining whether coins are 
unbiased, the reasoning behind the p values reported in articles is identical. When 
two treatments are being compared, how likely is it that the observed difference is 
due to chance alone? If we accept the conventional boundary or threshold (p < 
0.05), we will reject the null hypothesis and conclude that the treatment has some 
effect when the answer to this question is that repetitions of the experiment would 
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yield differences as extreme as those we have observed less than 5% of the time. 

In the randomized trial mentioned earlier, treatment with enalapril was 
compared with treatment by a combination of hydralazine and nitrates in 804 male 
patients with heart failure. This trial illustrates hypothesis testing when there is a 
dichotomous (Yes-No) outcome, in this case, life or death [14]. During the follow-
up period, which ranged from 6 months to 5.7 years, 132 (33%) of the 403 patients 
assigned to the enalapril group died, as did 153 (38%) of the 401 assigned to the 
hydralazine and nitrates group. Application of a statistical test that compares 
proportions (the chi squared (chi2) test) shows that if there were actually no 
difference in mortality between the two groups, differences as large as or larger 
than those actually observed would be expected 11 times in 100 (chi squared (chi2) 
= 0.11). We use the hypothesis-testing framework and the conventional cut-off 
point of 0.05, and we conclude that we cannot reject the null hypothesis -- the 
difference observed is compatible with chance. 

RISK OF A FALSE-NEGATIVE RESULT  

A clinician might comment on the results of the comparison of enalapril with 
hydralazine and nitrates as follows: "Although I accept the 0.05 threshold and 
therefore agree that we cannot reject the null hypothesis, I still suspect that 
treatment with enalapril results in a lower mortality rate than treatment with the 
combination of hydralazine and nitrates. The experiment leaves me in a state of 
uncertainty." This clinician recognizes a second type of error that an investigator 
can make: falsely concluding that an effective treatment is useless. A Type II error 
occurs when we erroneously fail to reject the null hypothesis (and, therefore, we 
dismiss a useful treatment). 

In the comparison of treatment with enalapril and with hydralazine and nitrates, 
the possibility of erroneously concluding that there is no difference between the 
treatments looms large. The investigators found that 5% fewer patients receiving 
enalapril died than those receiving the alternative vasodilator regimen. If the true 
difference in mortality really were 5%, we would readily conclude that patients 
benefit from enalapril. Despite this result, however, we were unable to reject the 
null hypothesis. 

Why were the investigators unable to conclude that enalapril is superior to 
hydralazine and nitrates despite having observed an important difference between 
the mortality rates? The study did not enrol enough patients for the investigators to 
be confident that the difference they observed was real. The likelihood of missing 
an important difference (and making a Type II error) decreases as the sample gets 
larger. When there is a high risk of making a Type II error, we say the study has 
inadequate power. The larger the sample, the lower the risk of Type II error and the 
greater the power. Although 804 patients were recruited by the investigators 
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conducting the vasodilator trial, for dichotomous outcomes such as life or death 
very large samples are often required to detect small differences in the effects of 
treatment. For example, the trials that established the optimal treatment of acute 
myocardial infarction with acetylsalicylic acid and thrombolytic agents recruited 
thousands of patients to ensure adequate power. 

When a trial fails to reject the null hypothesis (p > 0.05) the investigators may 
have missed a true treatment effect, and we should consider whether the power of 
the trial was adequate. In such "negative" studies, the stronger the trend in favour 
of the experimental treatment, the more likely the trial missed a true treatment 
effect [15]. We will explain more about deciding whether a trial had adequate 
power in the next article in this series. 

Some studies are designed to determine not whether a new treatment is better 
than the current one but whether a treatment that is less expensive, easier to 
administer or less toxic yields the same treatment effect as standard therapy. In 
such studies (often called "equivalence studies" [16]) recruitment of an adequate 
sample to ensure that small but important treatment effects will not be missed is 
even more important. If the sample size in an equivalence study is inadequate, the 
investigator risks concluding that the treatments are equivalent when, in fact, 
patients given standard therapy derive important benefits in comparison with those 
given the easier, cheaper or less toxic alternative. 

CONTINUOUS MEASURES OF OUTCOME  

All of our examples so far have used outcomes such as Yes or No, heads or tails, 
or dying or not dying, that can be expressed as proportions. Often, investigators 
compare the effects of two or more treatments using numeric or ordinal variables 
such as spirometric measurement, cardiac output, creatinine clearance or score on a 
quality-of-life questionnaire. These outcomes are continuous: a large number of 
values are possible. 

For example, in the study of enalapril versus hydralazine and nitrates in the 
treatment of heart failure the investigators compared the effect of the two regimens 
on exercise capacity (a continuous variable). In contrast with the effect on 
mortality, which showed better results with enalapril treatment, exercise capacity 
improved with hydralazine and nitrates but not with enalapril. The investigators 
compared the change in exercise capacity from baseline to 6 months in the two 
treatment groups with the use of a statistical test for continuous variables (Student's 
t-test). Exercise capacity in the group receiving hydralazine and nitrates improved 
more than it did in the other group, and the difference between the two groups was 
unlikely to have occurred by chance (p = 0.02). P values for Students' t-test and 
others like it are obtained from standard tables.
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BASELINE DIFFERENCES  

Authors of articles often state that hypothesis tests have been "adjusted" for 
baseline differences in the groups studied. Random assignment, in which chance 
alone dictates to which group a patient is allocated, generally produces comparable 
groups. However, if the investigator is unlucky, factors that determine outcome 
might be unequally distributed between the two groups. For example, in a trial to 
compare two treatments, let us say that it is known that older patients have a poorer 
outcome. After random assignment, the investigator discovers that a larger 
proportion of the older patients are assigned to one of the two treatments. This age 
imbalance could threaten the validity of an analysis that does not take age into 
account. So the investigator performs an adjustment in the statistical test to yield a 
p value corrected for differences in the age distribution of the two groups. In this 
example, readers are presented with the probability that would have been generated 
if the age distribution in the two groups had been the same. In general, adjustments 
can be made for several variables at once, and the p value can be interpreted in the 
regular way. 

MULTIPLE TESTS  

University students have long been popular subjects for experiments. In keeping 
with this tradition, we have chosen medical students as the subjects for our next 
thought experiment. 

Picture a medical school in which an introductory course on medical statistics is 
taught by two instructors, one of whom is more popular than the other. The dean of 
the medical school has no substitute for the less popular faculty member. She has a 
particular passion for fairness and decides that she will deal with the situation by 
assigning the 200 first-year medical students to one instructor or the other by 
random assignment, in which each student has an equal chance (0.5) of being 
allocated to one of the two instructors. 

The instructors decide to use this decision to illustrate some important principles 
of medical statistics. They therefore ask Do any characteristics of the two groups 
of students differ beyond a level that could be explained by chance? The 
characteristics they choose are sex, eye colour, height, grade-point average in the 
previous year of university, socioeconomic status and favourite type of music. The 
instructors formulate null hypotheses for each of their tests. For instance, the null 
hypothesis associated with sex distribution is as follows: the students are drawn 
from the same group of people; therefore, the true proportion of women in the two 
groups is identical. Since the investigators know in advance that the null 
hypothesis in each case is true, any time the hypothesis is rejected represents a 
false-positive result. 
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The instructors survey their students to determine their status on each of the six 
variables of interest. For five of these variables they find that the distributions are 
similar in the two groups, and the p values associated with statistical tests of the 
differences between groups are all greater than 0.10. They find that for eye colour, 
however, 25 of 100 students in one group have blue eyes and 38 of 100 in the other 
group have blue eyes. A statistical analysis reveals that if the null hypothesis were 
true (which it is) then such a difference in the proportion of people with blue eyes 
in the two groups would occur slightly less than five times in 100 repetitions of the 
experiment. If the investigators used the conventional boundary the null hypothesis 
would be rejected. 

How likely is it that, in six independent hypothesis tests on two similar groups 
of students, at least one test would have crossed the threshold of 0.05 by chance 
alone? ("Independent" means that the result of a test of one hypothesis does not, in 
any way, depend on the results of tests of any of the other hypotheses.) This 
probability is calculated as follows: the probability that we would not cross the 0.5 
threshold in testing a single hypothesis is 0.95; in testing two hypotheses the 
probability that neither one would cross the threshold is 0.95 multiplied by 0.95 
(the square of 0.95); in testing six hypotheses, the probability that not a single one 
would cross the 0.5 threshold is 0.95 to the sixth power, or 0.74. Therefore, when 
six independent hypotheses are tested the probability that at least one result is 
statistically significant is 0.265 or approximately 1 in 4, not 1 in 20. If we wish to 
maintain our overall boundary for statistical significance at 0.05, we have to divide 
the threshold p value by six, so that each of the six tests uses a boundary value of p 
= 0.008. That is, you would reject the null hypothesis that none of the 
characteristics differed significantly only if any one of the differences was 
significant at p < 0.008. 

There are two messages here. First, rare findings happen on occasion by chance. 
Even with a single test, a finding with a p value of 0.01 will happen 1% of the 
time. Second, we should beware of multiple hypothesis testing, because it may 
yield misleading results. Examples of this phenomenon abound in the clinical 
literature. Pocock, Hughes and Lee, [2] in a survey of 45 trials from three leading 
medical journals, found that the median number of endpoints was 6, and most 
results were tested for statistical significance. A specific example of the dangers of 
using multiple endpoints is found in a randomized trial of the effect of 
rehabilitation after myocardial infarction on quality of life [17]. The investigators 
randomly assigned patients to standard care, an exercise program or a counselling 
program and obtained patient reports on work, leisure, sexual activity, satisfaction 
with outcome, compliance with advice, quality of leisure and work, psychiatric 
symptoms, cardiac symptoms and general health. For almost all of these variables, 
there was no difference between the three groups. However, the patients were more 
satisfied with exercise than with the other two regimens, the families in the 
counselling group tried to protect the patients less than those in the other groups, 
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and work hours and frequency of sexual activity were greater at 18 months' 
follow-up in the counselling group than in the other groups. Does this mean that 
the exercise and counselling programs should be implemented because of the small 
number of outcomes in their favour, or that they should be rejected because most 
of the outcomes showed no difference? The authors concluded that their results did 
not support the effectiveness of either exercise or counselling programs in 
improving quality of life. However, a program advocate might argue that, even if 
only a few of the results favoured such programs, they are worth while. Hence, the 
use of multiple variables opens the door to controversy. 

There are several statistical strategies for dealing with multiple hypothesis 
testing of the same data. We have illustrated one of these in a previous example: 
dividing the p value by the number of tests. We can also specify, before the study 
is undertaken, a single primary outcome on which the main conclusions will hinge. 
A third approach is to derive a global test statistic that combines the multiple 
outcomes in a single measure. Full discussion of these strategies for dealing with 
multiple outcomes is beyond the scope of this article but is available elsewhere 
[18]. 

LIMITATIONS OF HYPOTHESIS TESTING  

Some readers may, at this point, have questions that leave them uneasy. Why 
use a single cut-off point when the choice of such a point is arbitrary? Why make 
the question of whether a treatment is effective a dichotomy (a Yes-No decision) 
when it may be more appropriate to view it as a continuum (from Very unlikely to 
be effective to Almost certain to be effective)? 

We are extremely sympathetic to such readers; they are on the right track. We 
will deal further with the limitations of hypothesis testing in the next article, which 
will present an alternative approach to testing for the presence of a treatment effect 
and to estimating a range of plausible values of such an effect. 

CONCLUSION  

We avoided listing the statistical procedures used to test the null hypotheses in 
the studies we have cited; we do not expect readers to recognize the many methods 
available or to question whether the appropriate test has been chosen. Rather, we 
have provided a guide to interpreting p values and a warning about their 
interpretation when multiple outcome measures are examined. We have alluded to 
the limitations of hypothesis testing and the resulting p values. In the next article, 
which will deal with confidence intervals, we will describe complementary 
techniques to address some of these deficiencies. 

REFERENCES  

Page 11 of 13Ovid: Guyatt: Can Med Assoc J, Volume 152(1).January 1, 1995.27-32

10/05/02http://gateway1.ovid.com/ovidweb.cgi



1. Department of Clinical Epidemiology and Biostatistics, McMaster University Health Sciences 
Centre: How to read clinical journals: I. Why to read them and how to start reading them critically. Can 
Med Assoc J 1981; 124: 555-558 [Context Link] 

2. Pocock SJ, Hughes MD, Lee RJ: Statistical problems in the reporting of clinical trials. A survey of 
three medical journals. N Engl J Med 1987; 317: 426-432 [Medline Link] [BIOSIS Previews Link] [Context Link] 

3. Evidence-Based Medicine Working Group: Evidence-based medicine: a new approach to teaching 
the practice of medicine. JAMA 1992; 268: 2420-2425 [Context Link] 

4. Guyatt GH, Rennie D: Users' guides to reading the medical literature. (editorial) JAMA 1993; 270: 
2096-2097 [Context Link] 

5. Sackett DL, Haynes RB, Guyatt GH et al: Clinical Epidemiology, a Basic Science for Clinical 
Medicine, Little, Brown and Company, Boston, 1991 [Context Link] 

6. Wasson JH, Sox HC, Neff RK et al: Clinical prediction rules. Applications and methodological 
standards. N Engl J Med 1985; 313: 793-799 [Medline Link] [BIOSIS Previews Link] [Context Link] 

7. Clegg F: Introduction to statistics. I: Descriptive statistics. Br J Hosp Med 1987; 37: 356-357 [Medline 
Link] [Context Link] 

8. O'Brien PC, Shampo MA: Statistics series. Statistical considerations for performing multiple tests in 
a single experiment. 1. Introduction. Mayo Clin Proc 1988; 63: 813-815 [Medline Link] [BIOSIS Previews 
Link] [Context Link] 

9. Altman DG, Gore SM, Gardner MJ et al: Statistical guidelines for contributors to medical journals. 
BMJ 1983; 286: 1489-1493 [Context Link] 

10. Gardner MJ, Altman DG: Estimating with confidence. BMJ 1988; 296: 1210-1211 [Context Link] 

11. Gardner MJ, Altman DG: Statistics with Confidence: Confidence Intervals and Statistical 
Guidelines, British Medical Journal, London, England, 1989 [Context Link] 

12. Oxman AD, Sackett DL, Guyatt GH for the Evidence-Based Medicine Working Group: A users' 
guide to the medical literature. Why and how to get started. JAMA 1993; 270: 2093-2095 [Context Link] 

13. Emerson JD, Colditz GA: Use of statistical analysis in the New England Journal of Medicine. N 
Engl J Med 1983; 309: 709-713 [Medline Link] [Context Link] 

14. Cohn JN, Johnson G, Ziesche S et al: A comparison of enalapril with hydralazine-isosorbide 
dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303-310 [Medline 
Link] [BIOSIS Previews Link] [Context Link] 

15. Detsky AS, Sackett DL: When was a "negative" trial big enough? How many patients you needed 
depends on what you found. Arch Intern Med 1985; 145: 709-715 [Medline Link] [BIOSIS Previews Link] 
[Context Link] 

16. Kirshner B: Methodological standards for assessing therapeutic equivalence. J Clin Epidemiol 1991; 
44: 839-849 [Medline Link] [BIOSIS Previews Link] [Context Link] 

17. Mayou R, MacMahon D, Sleight P et al: Early rehabilitation after myocardial infarction. Lancet 

Page 12 of 13Ovid: Guyatt: Can Med Assoc J, Volume 152(1).January 1, 1995.27-32

10/05/02http://gateway1.ovid.com/ovidweb.cgi



1981; 2: 1399-1401 [Medline Link] [BIOSIS Previews Link] [Context Link] 

18. Pocock SJ, Geller NL, Tsiatis AA: The analysis of multiple endpoints in clinical trials. Biometrics 
1987; 43: 487-498 [Medline Link] [BIOSIS Previews Link] [Context Link] 

 
Accession Number: 00002792-199501010-00016 

Copyright (c) 2000-2002 Ovid Technologies, Inc. 
Version: rel5.1.0, SourceID 1.6412.1.17

Page 13 of 13Ovid: Guyatt: Can Med Assoc J, Volume 152(1).January 1, 1995.27-32

10/05/02http://gateway1.ovid.com/ovidweb.cgi



© 1995 Canadian Medical Association; Association médicale canadienne 

Volume 152(2)             15 January 1995             pp 169-173 

Basic Statistics for Clinicians: 2. Interpreting Study Results: 
Confidence Intervals 

[Statistics] 

Guyatt, Gordon; Jaeschke, Roman; Heddle, Nancy; Cook, Deborah; Shannon, 
Harry; Walter, Stephen 

From the departments of Clinical Epidemiology and Biostatistics, Medicine and Pathology, 
McMaster University, Hamilton, Ont. 

Dr. Cook is a recipient of a Career Scientist Award from the Ontario Ministry of Health. Dr. Walter 
is the recipient of a National Health Scientist Award from Health Canada. 

Reprint requests to: Dr. Gordon Guyatt, Rm. 2C12, McMaster University Health Sciences Centre, 
1200 Main St. W, Hamilton ON L8N 3Z5. 

This is the second article in a series of four, to appear in the January and February 1995 issues of 
CMAJ. 

Outline 

Abstract 
SOLVING THE PROBLEM: CONFIDENCE INTERVALS 
USING CONFIDENCE INTERVALS TO INTERPRET STUDY RESULTS 
INTERPRETING TRIALS THAT APPEAR TO BE "NEGATIVE" 
INTERPRETING TRIALS THAT APPEAR TO BE "POSITIVE" 
WAS THE TRIAL LARGE ENOUGH? 
CONCLUSIONS 
REFERENCES 

 
Graphics 

Table 1 
Figure 1 

Abstract  

In the second of four articles, the authors discuss the "estimation" approach to 
interpreting study results.Whereas, in hypothesis testing, study results lead the 
reader to reject or accept a null hypothesis, in estimation the reader can assess 
whether a result is strong or weak, definitive or not. A confidence interval, based 
on the observed result and the size of the sample, is calculated. It provides a range 
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of probabilities within which the true probability would lie 95% or 90% of the 
time, depending on the precision desired. It also provides a way of determining 
whether the sample is large enough to make the trial definitive. If the lower 
boundary of a confidence interval is above the threshold considered clinically 
significant, then the trial is positive and definitive; if the lower boundary is 
somewhat below the threshold, the trial is positive, but studies with larger samples 
are needed. Similarly, if the upper boundary of a confidence interval is below the 
threshold considered significant, the trial is negative and definitive. However, a 
negative result with a confidence interval that crosses the threshold means that 
trials with larger samples are needed to make a definitive determination of clinical 
importance. 

 
In our first article in this series we explained hypothesis testing, which involves 

estimating the likelihood that observed results of an experiment would have 
occurred by chance if a null hypothesis -- that there was no difference between the 
effects of a treatment and a control condition -- were true. The limitations of 
hypothesis testing have been increasingly recognized, and an alternative approach, 
called estimation, is becoming more popular. Several authors [1,2,3,4,5] have 
outlined the concepts that we will introduce in this article, and their discussions 
may be read to supplement our explanation. 

An example from our first article illustrates the limitations of the hypothesis-
testing approach. In the results of this trial, the decision to reject the null 
hypothesis rests on the analysis one prefers. 

INTERPRETING STUDY RESULTS: HOW SHOULD WE TREAT HEART 
FAILURE? 

In a double-blind randomized trial, treatment with enalapril was compared with 
therapy with a combination of hydralazine and nitrates in 804 men with congestive 
heart failure [6]. During the period patients were followed up, from 6 months to 5.7 
years, 33% (132/403) of the patients assigned to enalapril died, as did 38% 
(153/401) of those assigned to hydralazine and nitrates. The p value associated 
with the difference in mortality, determined by a chi squared (chi2) test, was 0.11. 

If one considered this study an exercise in hypothesis testing and adopted the 
usual threshold for Type I error of p = 0.05, one would conclude that chance is an 
adequate explanation for the study results. One would classify this as a "negative" 
study, i.e., a study showing no important difference between treatment and control 
groups. However, the investigators also used their data to conduct a "survival 
analysis," which is generally more sensitive than a test of the difference in 
proportions. The p value for mortality obtained from the survival analysis was 
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0.08, a result that leads to the same conclusion as the simpler chi squared (chi2) 
test. However, the authors also reported that the p value associated with differences 
in mortality after 2 years ("a point predetermined to be a major end point of the 
trial") was 0.016. 

The reader could be excused for experiencing a little confusion. Do these results 
mean that this is a "positive" study supporting the use of an angiotensin-
converting-enzyme (ACE) inhibitor (enalapril) rather than the combination of 
hydralazine and nitrates or a "negative" study leaving open the choice of drug 
treatments? 

SOLVING THE PROBLEM: CONFIDENCE INTERVALS  

How can the limitations of hypothesis testing be remedied and the confusion 
resolved? The solution is found in an alternative approach that does not determine 
the compatibility of the results with the null hypothesis. This approach poses two 
questions: What is the single value most likely to represent the true difference 
between the treatment and control groups? and, given the observed difference 
between treatment and control groups, What is the plausible range of differences 
within which the true difference may lie? The second question can be answered 
with the use of confidence intervals. Before applying confidence intervals to 
resolve the issue of the benefits of enalapril versus those of hydralazine and 
nitrates, we will illustrate the use of confidence intervals with a coin-toss 
experiment similar to the one we conducted in the first article. 

Suppose that we have a coin that may or may not be biased. That is, the true 
probability of heads on any toss of the coin may be 0.5, but it may also be as high 
as 1.0 in favour of heads (every toss will yield heads) or in favour of tails (every 
toss will yield tails). We conduct an experiment to determine the true nature of the 
coin. 

We begin by tossing the coin twice, and we observe one head and one tail. At 
this point, our best estimate of the probability of heads on any given coin toss is the 
value we have obtained (known as the "point estimate"), which is 0.5 in this case. 
But what is the plausible range within which the true probability of finding a head 
on any individual coin toss may lie? This range is very wide, and on the basis of 
this experiment most people would think that the probability may be as high or 
higher than 0.9, or as low or lower than 0.1. In other words, if the true probability 
of heads on any given coin toss is 0.9, it would not be surprising if, in any sample 
of two coin tosses, one were heads and one tails. So, after two coin tosses we are 
not much further ahead in determining the true nature of the coin. 

We proceed with another eight coin tosses; after a total of 10, we have observed 
five heads and five tails. Our best estimate of the true probability of heads on any 
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given coin toss remains 0.5, the point estimate. The range within which the true 
probability of heads may plausibly lie has, however, narrowed. It is no longer 
plausible that the true probability of heads is as great as 0.9; with such a high 
probability, it would be very unlikely that one would observe 5 tails in a sample of 
10 coin tosses. People's sense of the range of plausible probabilities may differ, but 
most would agree that a probability greater than 0.8 or less than 0.2 is very 
unlikely. 

On the basis of 10 coin tosses, it is clear that values between 0.2 and 0.8 are not 
all equally plausible. The most likely value of the true probability is the point 
estimate, 0.5, but probabilities close to that point estimate (0.4 or 0.6, for instance) 
are also likely. The further the value from the point estimate, the less likely it 
represents the truth. 

Ten tosses have still left us with considerable uncertainty about our coin, and so 
we conduct another 40 repetitions. After 50 coin tosses, we have observed 25 
heads and 25 tails, and our point estimate remains 0.5. We now believe that the 
coin is very unlikely to be extremely biased, and our estimate of the range of 
probabilities that is reasonably consistent with 25 heads in 50 coin tosses is 0.35 to 
0.65. This is still a wide range, and we may persist with another 50 repetitions. If 
after 100 tosses we had observed 50 heads we might guess that the true probability 
is unlikely to be more extreme than 0.40 or 0.60. If we were willing to endure the 
tedium of 1000 coin tosses, and we observed 500 heads, we would be very 
confident (but still not certain) that our coin is minimally, if at all, biased. 

In this experiment we have used common sense to generate confidence intervals 
around an observed proportion (0.5). In each case, the confidence interval 
represents the range within which the truth plausibly lies. The smaller the sample, 
the wider the confidence interval. As the sample becomes larger, we are 
increasingly certain that the truth is not far from the point estimate we have 
observed from our experiment. 

Since people's "common-sense" estimate of the plausible range differs 
considerably, we can turn to statistical techniques for precise estimation of 
confidence intervals. To use these techniques we must be more specific about what 
we mean by "plausible." In our coin toss example we could ask What is the range 
of probabilities within which, 95% of the time, the true probability would lie? The 
actual 95% confidence intervals around the observed proportion of 0.5 for our coin 
toss experiment are given in Table 1. If we do not need to be so certain, we could 
ask about the range within which the true value would lie 90% of the time. This 
90% confidence interval, also presented in Table 1, is somewhat narrower. 
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Table 1. Confidence intervals around a proportion of 0.5 in a coin-toss experiment 

The coin toss example also illustrates how the confidence interval tells us 
whether the sample is large enough to answer the research question. If you wanted 
to be reasonably sure that any bias in the coin is no greater than 10% (that is, the 
confidence interval is within 10% of the point estimate) you would need 
approximately 100 coin tosses. If you needed greater precision -- with 3% of the 
point estimate -- 1000 coin tosses would be required. To obtain greater precision 
all you must do is make more measurements. In clinical research, this involves 
enrolling more subjects or increasing the number of measurements in each subject 
enrolled. (But take care: increasing precision by enlarging the sample or increasing 
the number of measurements does not compensate for poor study design [7,8,9].) 

USING CONFIDENCE INTERVALS TO INTERPRET STUDY 
RESULTS  

How can confidence intervals help us interpret the results of the trial to 
determine different effects of vasodilators in the treatment of heart failure? In the 
ACE-inhibitor arm of the trial 33% of the patients died, and in the group assigned 
to hydralazine and nitrates 38% died, yielding an absolute difference of 5%. This 
difference is the point estimate, our best single estimate of the benefit in lives 
saved from the use of an ACE inhibitor. The 95% confidence interval around this 
difference is -1.2% to 12%. 

How can we now interpret the study results? The most likely value for the 
difference in mortality between the two vasodilator regimens is 5%, but the true 
difference may be up to 1.2% in favour of hydralazine and nitrates or up to 12% in 
favour of the ACE inhibitor. Values farther from 5% are less and less probable. We 
can conclude that patients offered ACE inhibitors most likely (but not certainly) 
will die later than patients offered hydralazine and nitrates; however, the 
magnitude of the difference in expected survival may be trivial or large. This way 
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of understanding the results avoids the Yes-No dichotomy that results from 
hypothesis testing, the expenditure of time and energy to evaluate the legitimacy of 
the authors' end point of mortality after 2 years, and consideration of whether the 
study is "positive" or "negative" on the basis of the results. One can conclude that, 
all else being equal, an ACE inhibitor is the appropriate choice for patients with 
heart failure, but that the strength of this inference is weak. The toxic effects and 
cost of the drugs, and evidence from other studies, would all bear on the treatment 
decision. Since several large randomized trials have now shown that a benefit is 
gained from the use of ACE inhibitors in patients with heart failure, [10,11] one can 
confidently recommend this class of agents as the treatment of choice. 

INTERPRETING TRIALS THAT APPEAR TO BE 
"NEGATIVE"  

In another example of the use of confidence intervals in interpreting study 
results, Sackett and associates [12] examined results from the Swedish Co-operative 
Stroke Study, a trial designed to determine whether patients with cerebral infarcts 
would have fewer subsequent strokes if they took acetylsalicylic acid (ASA) [13]. 
The investigators gave placebos to 252 patients in the control group, of whom 7% 
(18) had a subsequent nonfatal stroke, and ASA to 253 patients in the experimental 
group, of whom 9% (23) had a nonfatal stroke. The point estimate was therefore a 
2% increase in strokes with ASA prophylaxis. The results certainly did not favour 
the use of ASA for prevention of stroke. 

The results of this large trial, involving more than 500 patients, may appear to 
exclude any possible benefit from ASA. However, the 95% confidence interval 
around the point estimate of 2% in favour of placebo is from 7% in favour of 
placebo to 3% in favour of ASA. If, in fact, 3% of patients who had strokes would 
have been spared if they had taken ASA, one would certainly want to administer 
the drug. By treating 33 patients, one stroke could be prevented. Thus, one can 
conclude that the Swedish study did not exclude a clinically important benefit and, 
in that sense, did not have a large enough sample. 

As this example emphasizes, many subjects are needed in order to generate 
precise estimates of treatment effects; this is why clinicians are turning more and 
more to rigorous meta-analyses that pool data from the most valid studies [14]. In 
the case of ASA prophylaxis for recurrent stroke, such a meta-analysis showed that 
antiplatelet agents given to patients with a previous transient ischemic attack (TIA) 
or stroke reduced the risk of a subsequent TIA or stroke by approximately 25% 
(confidence interval approximately 19% to 31%). This benefit is great enough that 
most clinicians will want to treat such patients with ASA [15]. 

This example also illustrates that, when one sees results of an apparently 
"negative" trial (one that, in a hypothesis-testing framework, would fail to exclude 
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the null hypothesis), one should pay particular attention to the upper end of the 
confidence interval, that is, the end that suggests the largest benefit from treatment. 
If even the smallest benefit of clinical importance lies above the upper boundary of 
the confidence interval, the trial is definitively negative. In contrast, if clinically 
important benefits fall within the confidence interval, the trial has not ruled out the 
possibility that the treatment is worth while. 

INTERPRETING TRIALS THAT APPEAR TO BE 
"POSITIVE"  

How can confidence intervals provide information about the results of a 
"positive" trial -- results that, in the previous hypothesis-testing framework, would 
be definitive enough to exclude chance as the explanation for differences between 
results of treatments? In another double-blind randomized trial of treatments for 
heart failure, the effect of enalapril was compared with that of a placebo [11]. Of 
1285 patients randomly assigned to receive the ACE inhibitor, 48% (613) died or 
were admitted to hospital for worsening heart failure, whereas 57% (736/1284) of 
patients who received placebo died or required hospital care. The point estimate of 
the difference in death or hospital admission for heart failure was 10%, and the 
95% confidence interval was 6% to 14%. Thus, the smallest true effect of the ACE 
inhibitor that is compatible with the data is a 6% (or about 1 in 17) reduction in the 
number of patients with these adverse outcomes. If it is considered worth while to 
treat 17 patients in order to prevent one death or heart failure, this trial is definitive. 
If, before using a drug, you require a reduction of more than 6% in the proportion 
of patients who are spared death or heart failure, a larger trial (with a 
correspondingly narrower confidence interval) would be required. 

WAS THE TRIAL LARGE ENOUGH?  

Confidence intervals provide a way of answering the question Was the trial large 
enough? We illustrate this approach in Fig. 1. Each of the distribution curves 
represents the results of one hypothetical randomized trial of an experimental 
treatment to reduce mortality (trials A, B, C and D). The vertical line at 0% 
represents a risk reduction of 0: a result at this value means that mortality in the 
experimental and control groups is exactly the same. Values to the right of the 
vertical line represent results in which the experimental group had a lower 
mortality than the control group; to the left of the vertical line, results in which the 
experimental group fared worse, with a higher mortality than the control group. 

The highest point of each distribution represents the result actually observed (the 
point estimate). In trials A and B the investigators observed that mortality was 5% 
lower in the experimental group than in the control group. In trials C and D they 
observed that mortality was 1% higher in the experimental group than in the 
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control group. 

The distributions of the likelihood of possible true results of each trial are based 
on the point estimate and the size of the sample. The point estimate is the single 
value that is most likely to represent the true effect. As you can see, values farther 
from the results observed are less likely than values closer to the point estimate to 
represent the true difference in mortality. 

Now, suppose we assume that an absolute reduction in mortality of greater than 
1% means that treatment is warranted (that is, such a result is clinically important), 
and a reduction of less than 1% means that treatment is not warranted (that is, the 
result is trivial). For example, if the experimental treatment results in a true 
reduction in mortality from 5% to 4% or less, we would want to use the treatment. 
If, on the other hand, the true reduction in mortality was from 5% to 4.5%, we 
would consider the benefit of the experimental treatment not to be worth the 
associated toxic effects and cost. What are the implications of this decision for the 
interpretation of the results of the four studies? 

In trial A the entire distribution and, hence, the entire 95% confidence interval 
lies above the threshold risk reduction of 1%. We can therefore be confident that 
the true treatment effect is above our threshold, and we have a definitive "positive" 
trial. That is, we can be very confident that the true reduction in risk is greater -- 
probably appreciably greater -- than 1%; this leaves little doubt that we should 
administer the treatment to our patients. The sample size in this trial was adequate 
to show that the treatment provides a clinically important benefit. 

Trial B has the same point estimate of treatment effect as trial A (5%) and is also 
"positive" (p < 0.05). In a hypothesis test, the null hypothesis would be rejected. 
However, more than 2.5% of the distribution is to the left of the 1% threshold. In 
other words, the 95% confidence interval includes values less than 1%. This means 
that the data are consistent with an absolute risk reduction of less than 1%, so we 
are left with some doubt that the treatment effect is really greater than our 
threshold. This trial is still "positive," but its results are not definitive. The sample 
in this trial was inadequate to establish definitively the appropriateness of 
administering the experimental treatment. 

Trial C is "negative"; its results would not lead to the rejection of the null 
hypothesis in a hypothesis test. The investigators observed mortality 1% higher in 
the treatment than in the control group. The entire distribution and, therefore, the 
95% confidence interval lie to the left of our 1% threshold. Because the upper limit 
of the distribution is 1%, we can be very confident that, if there is a positive effect, 
it is trivial. The trial has excluded any clinically important benefit of treatment, and 
it can be considered definitive. We can therefore decide against the use of the 
experimental treatment, at least for this type of patient.
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The result of trial D shows the same difference in absolute risk as that of trial C: 
mortality 1% higher in the experimental than in the control group. However, trial D 
had a smaller sample and, as a result, a much wider distribution and confidence 
interval. Since an appreciable portion of the confidence interval lies to the right of 
our 1% threshold, it is plausible (although unlikely) that the true effect of the 
experimental treatment is a reduction in mortality of greater than 1%. Although we 
would refrain from using this treatment (indeed, the most likely conclusion is that 
it kills people), we cannot completely dismiss it. Trial D was not definitive, and a 
trial involving more patients is required to exclude a clinically important treatment 
effect. 

CONCLUSIONS  

We can restate our interpretation of confidence intervals as follows. In a 
"positive" trial -- one that establishes that the effect of treatment is greater than 
zero -- look at the lower boundary of the confidence interval to determine whether 
the size of the sample is adequate. The lower boundary represents the smallest 
plausible treatment effect compatible with the data. If it is greater than the smallest 
difference that is clinically important, the sample size is adequate and the trial 
definitive. However, if it is less than this smallest important difference, the trial is 
not definitive and further trials are required. In a "negative" trial -- the results of 
which do not exclude the possibility that the treatment has no effect -- look at the 
upper boundary of the confidence interval to determine whether the size of the 
sample is adequate. If the upper boundary -- the largest treatment effect compatible 
with the data -- is less than the smallest difference that is clinically important, the 
size of the sample is adequate, and the trial is definitively negative. If the upper 
boundary exceeds the smallest difference considered important, there may be an 
important positive treatment effect, the trial is not definitive, and further trials are 
required. 

In this discussion we have examined absolute differences in proportions of 
patients who died while receiving two different treatments. In the next article in 
this series, we will explain how to interpret other ways investigators present 
treatment effects, including odds ratios and relative risk. 
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Figure 1. Distributions of the likehood of the true results of four trials (A, B, C and D). Trial A is a definitive 
and trial B a nondefinitive positive trial. Trial C is a definitive and trial D a nondefinitive negative trial 

Accession Number: 00002792-199501150-00017 

Copyright (c) 2000-2002 Ovid Technologies, Inc. 
Version: rel5.1.0, SourceID 1.6412.1.17

Page 11 of 11Ovid: Guyatt: Can Med Assoc J, Volume 152(2).January 15, 1995.169-173

10/05/02http://gateway1.ovid.com/ovidweb.cgi



© 1995 Canadian Medical Association; Association médicale canadienne 

Volume 152(3)             1 February 1995             pp 351-357 

Basic Statistics for Clinicians: 3. Assessing the Effects of 
Treatment: Measures of Association 

[Statistics] 

Jaeschke, Roman; Guyatt, Gordon; Shannon, Harry; Walter, Stephen; Cook, 
Deborah; Heddle, Nancy 

From the departments of Clinical Epidemiology and Biostatistics, Medicine and Pathology, 
McMaster University, Hamilton, Ont. 

Dr. Cook is a recipient of a Career Scientist Award from the Ontario Ministry of Health. Dr. Walter 
is the recipient of a National Health Scientist Award from Health Canada. 

Reprint requests to: Dr. Gordon Guyatt, Rm. 2C12, McMaster University Health Sciences Centre, 
1200 Main St. W, Hamilton ON L8N 3Z5. 

This is the third article in a series of four, to appear in the January and February 1995 issues of 
CMAJ. 

Outline 

Abstract 
INTRODUCING THE 2 x 2 TABLE 
RELATIVE RISK 
ABSOLUTE RISK REDUCTION 
RELATIVE RISK REDUCTION 
ODDS RATIO 
RR VERSUS OR VERSUS ARR: WHY THE FUSS? 
NUMBER NEEDED TO TREAT 
BACK TO THE 2 x 2 TABLE 
CONFIDENCE INTERVALS 
SURVIVAL DATA 
CASE-CONTROL STUDIES 
WHICH MEASURE OF ASSOCIATION IS BEST? 
INTERPRETING STUDY RESULTS 
REFERENCES 

 
Graphics 

Table 1 
Table 2 
Figure 1 
Table 3 

Page 1 of 14Ovid: Jaeschke: Can Med Assoc J, Volume 152(3).February 1, 1995.351-357

10/05/02http://gateway1.ovid.com/ovidweb.cgi



Abstract  

In the third of a series of four articles the authors show the calculation of 
measures of association and discuss their usefulness in clinical decision 
making.From the rates of death or other "events" in experimental and control 
groups in a clinical trial, we can calculate the relative risk (RR) of the event after 
the experimental treatment, expressed as a percentage of the risk without such 
treatment. The absolute risk reduction (ARR) is the difference in the risk of an 
event between the groups. The relative risk reduction is the percentage of the 
baseline risk (the risk of an event in the control patients) removed as a result of 
therapy. The odds ratio (OR), which is the measure of choice in case-control 
studies, gives the ratio of the odds of an event in the experimental group to those in 
the control group. The OR and the RR provide limited information in reporting the 
results of prospective trials because they do not reflect changes in the baseline risk. 
The ARR and the number needed to treat, which tells the clinician how many 
patients need to be treated to prevent one event, reflect both the baseline risk and 
the relative risk reduction. If the timing of events is important -- to determine 
whether treatment extends life, for example -- survival curves are used to show 
when events occur over time. 

 
The reader familiar with the first two articles in this series will, when presented 

with the results of a clinical trial, know how to discover the range within which the 
treatment effect likely lies. This treatment effect is worth considering if it comes 
from a study that is valid [1]. In this article, we explore the ways investigators and 
representatives of pharmaceutical companies may present the results of a trial. 

When clinicians look at the results of clinical trials they are interested in the 
association between a treatment and an outcome. There may be no association; for 
example, there may be no difference in mean values of an indicator -- such as 
blood pressure -- between groups, or the same risk of an adverse event -- such as 
death -- in both groups. Alternatively, the trial results may show a decreased risk of 
adverse outcomes in patients receiving the experimental treatment. In a study 
examining a putatively harmful agent there may be no increase in risk among 
patients in a group exposed to the agent in comparison with those in a control 
group or an association between exposure and an adverse event, which suggests 
that the agent is indeed harmful. In this article, we examine how one can express 
the magnitude of these associations. 

When investigators present results that show a difference in the mean value of a 
clinical measurement between two groups, the interpretation is usually 
straightforward. However, when they present results that show the proportion of 
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patients who suffered an adverse event in each group, interpretation may be 
more difficult. In this situation they may express the strength of the association as a 
relative risk, an absolute risk reduction or an odds ratio. Understanding these 
measures is challenging and important; they will provide the focus of this article. 
We will examine the relative merits of the different measures of association and 
show how they can lead clinicians to different conclusions. 

INTRODUCING THE 2 x 2 TABLE  

A crucial concept in analysing the efficacy of therapeutic interventions is the 
"event." Analysis often examines the proportion of patients who suffered a 
particular outcome (the "event") in the treatment and control groups. This is always 
true when the outcome is clearly a dichotomous variable -- that is, a discrete event 
that either occurs or does not occur. Examples of dichotomous outcomes are the 
occurrence of negative events, such as stroke, myocardial infarction, death or 
recurrence of cancer, or positive events, such as ulcer healing or resolution of 
symptoms. Not only an event's occurrence but also its timing may be important. 
We will return to this issue later. 

Even if the results are not of a yes-or-no form, investigators sometimes choose 
to present them as if they were. Investigators may present variables such as 
duration of exercise before chest pain develops, number of episodes of angina per 
month, change in lung function or number of visits to the emergency room as mean 
values in each of the two groups. However, they may also transform these values 
into dichotomous data by specifying a threshold or degree of change that 
constitutes an important improvement or deterioration and then examining the 
proportion of patients above and below this threshold. For example, investigators 
in one study used forced expiratory volume in 1 second (FEV1) to assess the 
efficacy of therapy with corticosteroids taken orally by patients with a chronic 
stable airflow limitation; they defined an "event" as an improvement in FEV1 of 
more than 20% over the baseline value [2]. 

The results of trials with dichotomous outcomes can usually be presented in a 
form of 2 x 2 table Table 1. For instance, in a randomized trial investigators 
compared rates of death among patients with bleeding esophageal varices 
controlled by either endoscopic ligation or sclerotherapy [3]. After a mean follow-
up period of 10 months, 18 of 64 patients assigned to ligation died, as did 29 of 65 
patients assigned to sclerotherapy. Table 2summarizes the data from this trial in a 2 
x 2 table. 
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Table 1. Sample 2 x 2 table 

 

 
Table 2. Results from a randomized trial comparing treatment of bleeding esphageal varices with endoscopic 
sclerotherapy and with ligation 

RELATIVE RISK  

The first thing we can determine from the 2 x 2 Table is that the risk of an event 
(death, in this case) was 28.1% (18/64) in the ligation group and 44.6% (29/65) in 
the sclerotherapy group. The ratio of these risks is called the relative risk (RR) or 
the risk ratio. This value tells us the risk of the event after the experimental 
treatment (in this case, ligation), as a percentage of the original risk (in this case, 
the risk of death after sclerotherapy). From Table 1, the formula for calculating the 
RR from the data gathered is (A/(A + B))/(C/(C + D)). In our example, the RR of 
death after receiving initial ligation compared with sclerotherapy is 18/64 (the risk 
in the ligation group) divided by 29/65 (the risk in the sclerotherapy group), which 
equals 63%. That is, the risk of death after ligation is about two thirds as great as 
the risk of death after sclerotherapy. 

ABSOLUTE RISK REDUCTION  
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The difference in the risk of the outcome between patients who have undergone 
one therapy and those who have undergone another is called the absolute or 
attributable risk reduction (ARR) or the risk difference. The formula for its 
calculation, from Table 1, is (C/(C + D)) - (A/(A + B)). This measure tells us the 
percentage of patients who are spared the adverse outcome as a result of having 
received the experimental rather than the control therapy. In our example, the ARR 
is 0.446 minus 0.281, which equals 0.165, or 16.5%. 

RELATIVE RISK REDUCTION  

Another measure used to assess the effectiveness of treatment is relative risk 
reduction (RRR). One considers first the risk of an adverse event among patients 
taking the placebo or, if two therapies are being compared, the risk among patients 
receiving the standard or inferior therapy. This is called the baseline risk. The 
relative risk reduction is an estimate of the percentage of baseline risk that is 
removed as a result of the therapy; it is calculated as the ARR between the 
treatment and control groups, divided by the absolute risk among patients in the 
control group; from Table 1, ((C/(C + D)) - (A/(A + B)))/(C/(C + C)). In our 
example, the RRR is calculated by dividing 16.5% (the ARR) by 44.6% (the risk 
among patients receiving sclero-therapy), which equals 37%. One may also derive 
the RRR by subtracting the RR from 1. In our example, the RRR is equal to 1 
minus 0.63, or 0.37 (37%). 

ODDS RATIO  

Instead of looking at the risk of an event, we could estimate the odds of an event 
occurring. In our example, the odds of death after ligation are 18 (death) versus 46 
(survival), or 18/46 (A/B), and the odds of death after sclero-therapy are 29 versus 
36 (C/D). The formula for the ratio of these odds -- called, not surprisingly, the 
odds ratio (OR) -- is (A/C)/(B/D). In our example, this calculation yields (18/46)/
(29/36), which equals 0.49. 

The OR is probably less familiar to physicians than risk or RR. However, the 
OR is usually the measure of choice in the analysis of case-control studies. In 
general, the OR has certain optimal statistical properties that make it the 
fundamental measure of association in many types of studies [4]. These statistical 
advantages may be particularly important when data from several studies are 
combined, as they are in a meta-analysis. Among such advantages, the comparison 
of risk represented by the OR does not depend on whether the investigator chose to 
determine the risk of an event occurring (e.g., death) or not occurring (e.g., 
survival). This is not true for relative risk. In some situations the OR and the RR 
will be close -- for example, in case-control studies of a rare disease. 
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RR VERSUS OR VERSUS ARR: WHY THE FUSS?  

The important distinction among the ARR, the RR and the OR may be 
illustrated by modifying the death rates in each of the two treatment groups shown 
in Table 2. In the explanation that follows, the reader should note that the effect on 
the various expressions of risk depends on the way the death rates are changed. We 
could alter the death rates by the same absolute amount in each group, by the same 
relative amount, or in some other way. 

There is some evidence that, when treatment reduces the rate of death, the 
reduction in rates or proportion of deaths will often be similar in each subgroup of 
patients [5,6]. In our example, if we assume that the number of patients who died 
decreased by 50% in both groups, the risk of death in the ligation group would 
decrease from 28% to 14% and in the sclerotherapy group from 44.6% to 22.3%. 
The RR would be 14/22.3 or 0.63 -- the same as before. The OR would be (9/55)/
(14.5/51) or 0.58, which differs moderately from the OR based on the higher death 
rate (0.49), and is closer to the RR. The ARR would decrease from 16.5% to 
approximately 8%. Thus, a decrease in the proportion of patients who died in both 
groups by a factor of two leaves the RR unchanged, results in a moderate increase 
in the OR and reduces the ARR by a factor of two. This example highlights the fact 
that the same RR can be associated with very different ORs and ARRs. A major 
change in the risk of an adverse event without treatment (or, as in this case, with 
the inferior treatment) will not be reflected in the RR or the OR; in contrast, the 
ARR changes markedly with a change in the baseline risk. 

Hence, the RR and the OR do not tell us the magnitude of the absolute risk. An 
RR of 33% may mean that the treatment reduces the risk of an adverse outcome 
from 3% to 1% or from 60% to 20%. The clinical implications of these risk 
reductions are very different. Consider a therapy with severe side effects. If such 
side effects occur in 5% of patients treated, and the treatment reduces the 
probability of an adverse outcome from 3% to 1%, we probably will not institute 
this therapy. However, we may be willing to accept this incidence of side effects if 
the therapy reduces the probability of an adverse outcome from 60% to 20%. In the 
latter situation, of every 100 patients treated 40 would benefit and 5 would suffer 
side effects -- a trade-off that most would consider worth while. 

The RRR behaves the same way as the RR: it does not reflect the change in the 
underlying risk in the control population. In our example, if the incidence of 
adverse events decreased by approximately 50% in both groups, the RRR would be 
the same as it was at the previous incidence rate: (22.3 - 14)/22.3 or 0.37. The RRR 
therefore shares with the RR the disadvantage of not reflecting the baseline risk. 

These observations depend on the assumption that the death rates in the two 
groups change by the same proportion. If these changes are not proportional the 
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conclusions may be different. For instance, suppose that the rates of death 
between the two groups differ by 10 percentage points; for example, if the death 
rates are 80% and 90%, respectively, the RR is 0.8/0.9 or 89%, the RRR 11%, the 
ARR 10% and the OR 0.44. If the rates of death then decrease by 50 percentage 
points in each group, to 30% and 40% respectively, the RR would be 0.3/0.4 or 
75%, the RRR 25%, the ARR 10% and the OR 0.64. In this case, the ARR remains 
constant and thus does not reflect the change in the magnitude of risk without 
therapy. In contrast, the other indices differ in the two cases and hence reflect the 
change in the baseline risk. 

NUMBER NEEDED TO TREAT  

The number needed to treat (NNT) is the most recently introduced measure of 
treatment efficacy [7]. Let us return to our 2 x 2 tables for a short exercise. In Table 
2we see that the risk of death in the ligation group is 28.1% and in the 
sclerotherapy group 44.6%. Therefore, treating 100 patients with ligation rather 
than sclerotherapy will save the lives of between 15 and 16 patients, as shown by 
the ARR. If treating 100 patients prevents 16 adverse events, how many patients do 
we need to treat to prevent 1 event? The answer is 100 divided by 16, which yields 
approximately 6. This is the NNT. One can also arrive at this number by taking the 
reciprocal of the ARR (1/ARR). Since the NNT is related to the ARR, it is not 
surprising that the NNT also changes with a change in the underlying risk. 

The NNT is directly related to the proportion of patients in the control group 
who suffer an adverse event. For instance, if the incidence of these events (the 
baseline risk) decreased by a factor of two and the RRR remained constant, 
treating 100 patients with ligation would mean that 8 events had been avoided, and 
the NNT would double, from 6 to 12. In general, the NNT changes inversely in 
relation to the baseline risk. If the risk of an adverse event doubles, we need treat 
only half as many patients to prevent the same number of adverse events; if the risk 
decreases by a factor of four, we must treat four times as many patients to achieve 
the same result. 

BACK TO THE 2 x 2 TABLE  

The data we have presented so far could have been derived from the original 2 x 
2 table Table 2. The ARR and its reciprocal, the NNT, incorporate the influence of 
any change in baseline risk, but they do not tell us the magnitude of the baseline 
risk. For example, an ARR of 5% (and a corresponding NNT of 20) may represent 
reduction of the risk of death from 10% to 5% or from 50% to 45%. The RR and 
RRR do not take into account the baseline risk, and the clinical utility of these 
measures suffers as a result. 

Whichever way we choose to express the efficacy of a treatment, we must keep 
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in mind that the 2 x 2 Table reflectsresults at a given time. Therefore, our 
comments on the RR, the ARR, the RRR, the OR and the NNT must be qualified 
by giving them a time frame. For example, we must say that use of ligation rather 
than sclerotherapy for a mean period of 10 months resulted in an ARR of 17% and 
an NNT of 6. The results could be different if the duration of observation was very 
short, in which case there was little time for an event such as death to occur, or 
very long, in which case it is much more likely that an event will occur (e.g., if the 
outcome is death, after 100 years of follow-up all of the patients will have died). 

CONFIDENCE INTERVALS  

We have presented all of the measures of association for treatment with ligation 
versus sclerotherapy as if they represented the true effect. As we pointed out in the 
previous article in this series, the results of any experiment are an estimate of the 
truth. The true effect of treatment may actually be greater or less than what we 
observed. The confidence interval tells us, within the bounds of plausibility, how 
much greater or smaller the true effect is likely to be. Confidence intervals can be 
calculated for each of the measures of association we have discussed. 

SURVIVAL DATA  

As we pointed out, the analysis of a 2 x 2 Table is an examination of the data at a 
specific time. Such analysis is satisfactory if we are investigating events that occur 
within relatively short periods and if all patients are followed for the same 
duration. However, in longer-term studies we are interested not only in the number 
of events but also in their timing. We may, for instance, wish to know whether 
therapy for a fatal condition such as severe congestive heart failure or unresectable 
lung cancer delays death. 

When the timing of events is important, the results can be presented in several 2 
x 2 tables constructed at certain points after the beginning of the study. In this 
sense, Table 2showed the situation after a mean of 10 months of follow-up. Similar 
tables could be constructed to show the fate of all patients at given times after their 
enrolment in the trial, i.e., at 1 week, 1 month, 3 months or whatever intervals we 
choose. An analysis of accumulated data that takes into account the timing of 
events is called survival analysis. Despite the name, such analysis is not restricted 
to deaths; any discrete event may be studied in this way. 

The survival curve of a group of patients shows the status of the patients at 
different times after a defined starting point [8]. In Fig. 1, we show an example of a 
survival curve taken from a trial of treatments of bleeding varices. Although the 
mean follow-up period in this trial was 286 days, the survival curve extends 
beyond this time, presumably to a point at which the number of patients still at risk 
is sufficient to make reasonably confident predictions. At a later point, prediction 
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would become very imprecise because there would be too few patients to 
estimate the probability of survival. This imprecision can be captured by 
confidence intervals or bands extending above and below the survival curves. 

Hypothesis tests can be applied to survival curves, the null hypothesis being that 
there is no difference between two curves. In the first article in this series, we 
described how an analysis based on hypothesis testing can be adjusted or corrected 
for differences in the two groups at the baseline. If one group were older (and thus 
had a higher risk of the adverse outcome) or had less severe disease (and thus had a 
lower risk), the investigators could conduct an analysis that takes into account 
these differences. Such an analysis tells us, in effect, what would have happened if 
the two groups had comparable risks of adverse outcomes at the start of the trial. 

CASE-CONTROL STUDIES  

The examples we have used so far have been prospective randomized controlled 
trials. In such trials we start with an experimental group of patients who are subject 
to an intervention and a control group of patients who are not. The investigators 
follow the patients over time and record the incidence of events. The process is 
similar in prospective cohort studies, although in this study design the "exposure" 
or treatment is not controlled by the investigators. Instead of being assigned to 
receive or not receive the intervention, patients are chosen, sampled or classified 
according to whether they were or were not exposed to the treatment or risk factor. 
In both randomized trials and prospective cohort studies we can calculate risks, 
ARRs and RRs. 

In case-control studies participants are chosen or sampled not according to 
whether they have been exposed to the treatment or risk factor but on the basis of 
whether they have experienced an event. Participants start the study with or 
without the event rather than with or without the exposure or intervention. Patients 
with the adverse outcome -- be it stroke, myocardial infarction or cancer -- are 
compared with control patients who have not suffered the outcome. The 
investigators wish to determine if any factor seems to be more common in one of 
these groups than in the other. 

In one case-control study investigators examined whether the use of sun-beds or 
sun-lamps increased the risk of melanoma [9]. They identified 583 patients with 
melanoma and 608 control patients. The control and case patients had similar 
distributions of age, sex and region of residence. The results for men and women 
were presented separately (those for men are shown in Table 3. 
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Table 3. Results from a case-control study of the association between meanoma and the use of sunbeds and 
sun-lamps 

If the information in Table 3came from a prospective cohort study or randomized 
controlled trial we could begin by calculating the risk of an event in the 
experimental and control groups. However, this would not make sense in a case-
control study because the number of patients who did not have melanoma was 
chosen by the investigators. For calculation of the RR we need to know the 
population at risk, and this information is not available in a case-control study. 

The only measure of association that makes sense in a case-control study is the 
OR. One can investigate whether the odds of having been exposed to sun-beds or 
sun-lamps among the patients with melanoma are the same as the odds of exposure 
among the control patients. In the study the odds were 67/210 in the patients with 
melanoma and 41/242 in the control patients. The odds ratio is therefore (67/210)/
(41/242) or 1.88 (95% confidence interval (CI) 1.20 to 2.98), which suggests an 
association between the use of sun-beds or sun-lamps and melanoma. The fact that 
the CI does not include 1.0 means that the association is unlikely to be due to 
chance. 

Even if the association were not due to chance, this does not necessarily mean 
that the sun-beds or sun-lamps were the cause of melanoma in these patients. 
Potential explanations could include higher recollection of use of these devices 
among patients with melanoma (recall bias), longer exposure to sun among these 
patients or different skin colour. (In fact, in this study the investigators addressed 
many of these possible explanations.) Confirmatory studies would be needed to be 
confident that exposure to sun-beds or sun-lamps was the cause of melanoma. 

WHICH MEASURE OF ASSOCIATION IS BEST?  
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In randomized trials and cohort studies, investigators can usually choose from 
several measures of association. Which should the reader hope to see? We believe 
that the best option is to show all of the data, in the form of 2 x 2 tables or life 
tables (deaths or other events during follow-up presented in tabular form), and then 
consider both the relative and absolute figures. As the reader examines the results, 
she or he will find the ARR and its reciprocal, the NNT, the most useful measures 
for deciding whether to institute treatment. As we have discussed, the RR and the 
RRR do not take baseline risk into account and can therefore be misleading. 

In fact, clinicians make different decisions depending on the way the results are 
reported. Clinicians consistently judge a therapy to be less effective when the 
results are presented in the form of the NNT than when any other measure of 
association is used [10]--13. 

INTERPRETING STUDY RESULTS  

We complete this exposition by reviewing the results of a landmark study -- the 
Lipid Research Clinics Coronary Primary Prevention Trial -- of the usefulness of 
therapy to lower serum cholesterol levels [14]. In this randomized, placebo-
controlled trial the investigators tested the hypothesis that a reduction in 
cholesterol levels reduces the incidence of coronary heart disease (CHD). They 
followed 3806 asymptomatic middle-aged men with primary hyper-
cholesterolemia (serum cholesterol levels above the 95th percentile), of whom one 
third were smokers, for a mean period of 7.4 years. Patients in one group received 
cholestyramine (24 g/d) and those in the other a placebo. The main outcome 
measures (events) were death due to CHD and nonfatal myocardial infarction. 
After 7.4 years of follow-up the results showed an ARR of 1.71% (95% CI -0.11% 
to 3.53%) and an NNT of 58 (the 95% CI for the NNT would include the fact that 
the therapy causes one death in 935 treated patients and requires treatment of 28 
patients to save one life). The original report did not provide CIs for the RR and 
the ARR. We used the original data to calculate these measures and the associated 
CIs, so our point estimates differ slightly from the adjusted estimates given in the 
original report. 

The risk of an event was 9.8% among the patients taking a placebo and 8.1% 
among those receiving cholestyramine. The RR of an event for those taking 
cholestyramine versus those taking a placebo was 83% (95% CI 68% to 101%). 
The use of cholestyramine was associated with a 17% reduction in the incidence of 
an event (RRR), with a 95% CI from a 33% reduction in risk to a 1% increase in 
risk, and with prevention of 17 primary events per 1000 patients treated. Therefore, 
58 patients (100/1.7) needed to be treated for 7 years to prevent one primary event. 

In addition to calculating the NNT, one could also consider resources expended 
to prevent an event. The cost of a month's supply of cholestyramine is $120.49. 
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The cost of the drug required to prevent one event is 58 (the NNT) x 7 years of 
follow-up x 12 months per year x $120.49 for a 1-month supply = $587 027.28. 
Alternatively, to prevent one event, patients need to take 24 g/d x 58 (NNT) x 365 
days per year x 7 years of follow-up = 3 556 560 g, approximately 3.56 tonnes to 
swallow of cholestyramine. 

If one considered only patients with a lower risk of CHD (younger men, women, 
nonsmokers and those with cholesterol levels that are elevated but not in the top 
95th percentile) the NNT would rise. It is not surprising that advertisements 
promoting the use of cholesterol-lowering drugs cite the RRR rather than the ARR 
or the NNT and do not mention the cost per event prevented. 

The results of this study provide another caution for the clinician. The results we 
have described are based on the incidence of both fatal and nonfatal coronary 
events. However, the death rates shown in this study were similar in the two 
groups: there were 71 deaths among patients receiving placebo and 68 among 
patients receiving cholestyramine. Furthermore, when investigators have examined 
all trials of drug therapy for lowering cholesterol, they have found a possible 
association between administration of these agents and death from causes other 
than cardiovascular disease [15]. As this result highlights, the wary user of the 
medical literature must be sure that all relevant outcomes are reported [16]. 

ARRs are easy to calculate, as is their reciprocal, the NNT. If the NNT is not 
presented in trial results, clinicians who wish to get the best sense of the effect of 
an intervention should take the trouble to determine the number of patients they 
need to treat to prevent an event as well as the cost and toxic effects associated 
with treatment of that number of patients. These measures will help clinicians to 
weigh the benefits and costs of treatments. 
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Figure 1. Survival curves showing percentages of patients who survived after treatment of bleeding esophageal 
varices with ligation and with sclerotherapy. Reprinted with permission from N Engl J Med 1992; 326: 1527-
1532 
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Abstract  

Correlation and regression help us to understand the relation between variables 
and to predict patients' status in regard to a particular variable of 
interest.Correlation examines the strength of the relation between two variables, 
neither of which is considered the variable one is trying to predict (the target 
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variable). Regression analysis examines the ability of one or more factors, called 
independent variables, to predict a patient's status in regard to the target or 
dependent variable. Independent and dependent variables may be continuous 
(taking a wide range of values) or binary (dichotomous, yielding yes-or-no results). 
Regression models can be used to construct clinical prediction rules that help to 
guide clinical decisions. In considering regression and correlation, clinicians 
should pay more attention to the magnitude of the correlation or the predictive 
power of the regression than to whether the relation is statistically significant. 

 
Clinicians are sometimes interested in the relation between different factors or 

"variables." How well does a relative's impression of a patient's symptoms and 
well-being predict the patient's own report? How strong is the relation between a 
patient's physical well-being and emotional function? In answering these questions, 
our goal is to enhance our understanding and consider the implications for action. 
If the relation between patients' perceptions and those of patients' relatives is not a 
strong one, the clinician must obtain both perspectives on a situation. If physical 
and emotional function are only weakly related, then clinicians must probe both 
areas thoroughly. 

Clinicians may be even more interested in making predictions or causal 
inferences than in understanding the relation between phenomena. Which clinical 
features of patients with chest pain presenting to the emergency department predict 
whether they have a myocardial infarction? What determines how dyspneic we feel 
when we exercise or when we suffer from a cardiac or respiratory illness? Can we 
predict which critically ill patients will tolerate weaning from a ventilator and 
which will not? 

We refer to the first issue -- understanding the magnitude of the relation between 
different variables or phenomena -- as "correlation." We call the statistical 
techniques for exploring the second issue -- making a prediction or causal 
inference -- "regression." In this final article in our series we will provide 
illustrations of the use of correlation and regression in medical literature. 

CORRELATION  

Traditionally, we measure the exercise capacity of patients with cardiac and 
respiratory illnesses with the use of a treadmill or cycle ergometer. About 20 years 
ago, investigators interested in respiratory disease began to use a simpler test that 
is more closely related to day-to-day activity [1]. In this test, patients are asked to 
cover as much ground as they can in a specified time (typically 6 minutes) walking 
in an enclosed corridor. There are several reasons why we may be interested in the 
strength of the relation between the 6-minute walk test and conventional laboratory 
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measures of exercise capacity. If the results of these tests are strongly related, 
we could substitute one test for the other. In addition, the strength of the relation 
could tell us how well exercise capacity, determined by laboratory measures, 
predicts patients' ability to undertake physically demanding activities of daily 
living. 

What do we mean by the strength of the relation between two variables? A 
relation is strong when patients who obtain high scores on the first variable also 
obtain high scores on the second, those who have intermediate scores on the first 
variable also show intermediate values on the second, and those who have low 
scores on one measure score low on the other. By contrast, if patients who have 
low scores on one measure are equally likely to have high or low scores on 
another, the relation between the two variables is poor or weak. 

We can gain a sense of the strength of the correlation by examining a graph that 
relates patients' scores on the two measures. Fig. 1 presents a scatterplot of the 
results of the walk test and of the cycle ergometer exercise test. The data for this 
graph, and for the subsequent analyses involving walk-test results, are taken from 
three studies of patients with chronic airflow limitation [2,3,4]. Each point on the 
scatterplot is for an individual patient and presents two pieces of information: the 
patient's walk-test score and cycle ergometer exercise score. The walk-test results 
are continuous; however, the cycle ergometer results tend to take only certain 
values because patients usually stop the test at the end of a particular level. From 
Fig. 1, one can see that, in general, patients who have a high score on the walk test 
tend to have a high score on the cycle ergometer exercise test, and patients who 
have a low score on the cycle ergometer test tend to have a low score on the walk 
test as well. Yet one can find patients who are exceptions, scoring higher than most 
other patients on one test and not as high on the other. 

These data represent a moderately strong relation between two variables, the 
walk test and the cycle ergometer exercise test. The strength of the relation can be 
summarized in a single number, the correlation coefficient (r). The correlation 
coefficient can range from -1.0 (the strongest possible negative relation -- the 
patient with the highest score on one test has the lowest score on the other) to 1.0 
(the strongest possible positive relation). A correlation coefficient of 0 denotes no 
relation at all between the two variables: patients with a high score on one test have 
the same range of scores on the other test as those with a low score on the first test. 
The scatterplot of data with a correlation coefficient of 0 looks like a starry sky 
(without the constellations). 

The correlation coefficient assumes a straight-line relation between the 
variables. However, there may be a relation between the variables that does not 
take the form of a straight line. For example, values of the variables may rise 
together, but one may rise more slowly than the other for low values and more 
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quickly than the other for high values. If there is a strong relation, but it is not a 
straight line, the correlation coefficient may be misleading. In our example, the 
relation does appear to approximate a straight line, and the value of r for the 
correlation between the walk test and the cycle ergometer test is 0.5. 

This value for r indicates a moderately strong correlation, but is it strong 
enough? It depends on how we wish to apply the information. If we were thinking 
of substituting the walk test for the cycle ergometer test (after all, the walk test is 
much simpler to carry out) we would be disappointed. A correlation of 0.8 or 
higher is required for us to feel comfortable with that kind of substitution. If the 
correlation is any lower than 0.8, there is too great a risk that a patient with a high 
score on the walk test would have mediocre or low score on the cycle ergometer 
test or vice versa. However, if we assume that the walk test provides a good 
indication of exercise capacity in day-to-day life, the moderately strong correlation 
suggests that the result of the cycle ergometer test also tells us something, although 
not as much, about day-to-day exercise capacity. 

You will often see a p value provided with a correlation coefficient (the first 
article in this series discusses the interpretation of p values). This p value is 
determined from a hypothesis test, with the null hypothesis being that the true 
correlation between the two measures is 0. Thus, the p value represents the 
probability that, if the true correlation were 0, a relation as strong as or stronger 
than the one we actually observed would have occurred by chance. The smaller the 
p value, the less likely it is that chance explains the apparent relation between the 
two measures. 

The p value depends not only on the strength of the relation but also on the 
sample size. In this case, we had data on the results of the walk test and the cycle 
ergometer test from 179 patients and a correlation coefficient of 0.5, which yields a 
p value of less than 0.0001. A relation can be very weak, but if the sample is large 
enough the p value may be small. For instance, with a sample of 500, we reach the 
conventional threshold for statistical significance (p = 0.05) when the correlation 
coefficient is only 0.10. 

In a previous article in this series we pointed out that, in evaluating treatment 
effects, the size of the effect and the confidence interval tend to be much more 
informative than p values. The same is true of correlations: the magnitude of the 
correlation and the confidence interval are the key values. The 95% confidence 
interval for the correlation between the results of the walk test and of the 
laboratory exercise test is 0.38 to 0.60. 

REGRESSION  

As clinicians, we are often interested in prediction: we wish to know which 
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patient will get a disease (such as coronary artery disease) and which will not, 
and which patient will fare well (returning home after a hip fracture rather than 
remaining in an institution) and which will fare poorly. Regression analysis is 
useful in addressing these sorts of issues. We will once again use the walk test to 
illustrate the concepts involved in statistical regression. 

Predicting walk-test scores  

Let us consider an investigation in which the goal is to predict patients' walk-test 
scores from more easily measured variables: sex, height and a measure of lung 
function (forced expiratory volume in 1 second (FEV (1))). Alternatively, we can 
think of the investigation as an examination of a causal hypothesis. To what extent 
are patients' walk-test scores determined by their sex, height and lung function? 
Either way, we have a target or response variable that we call the dependent 
variable (in this case the walk-test score) because it is influenced or determined by 
other variables or factors. We also have the explanatory or predictor variables, 
which we call independent variables -- sex, height and FEV1. 

Fig. 2, a histogram of the walk-test scores for 219 patients with long-term lung 
disease, shows that these scores vary widely. If we had to predict an individual 
patient's walk-test score without any other information, our best guess would be the 
mean score for all patients (394 m). For many patients, however, this prediction 
would be well off the mark. 

Fig. 3 shows the relation between FEV1 and walk-test scores. There is a relation 
between the two variables, although it is not as strong as that between the walk-test 
score and the exercise-test score, examined earlier (Fig. 1). Thus, some of the 
variation in walk-test scores seems to be explained by, or attributable to, the 
patient's FEV1. We can construct an Equation thatpredicts the walk-test score as a 
function of FEV (1). Because there is only one independent variable, we call this a 
univariate or simple regression [5]. 

In regression equations we generally refer to the predictor variable as x and the 
target variable as y. The Equation assumesa straight-line fit between the FEV1 and 
the walk-test score, and specifies the point at which the straight line meets the y-
axis (the intercept) and the steepness of the line (the slope). In this case, the 
regression Equation isy = 298 + 108x, where y is the walk-test score in metres, 298 
is the intercept, 108 is the slope of the line and x is the FEV (1) in litres. In this 
case, the intercept of 298 has little practical meaning: it predicts the walk-test score 
of a patient with an FEV1 of 0 L. The slope of 108 does, however, have meaning: it 
predicts that, for every increase in FEV1 of 1 L, the patient will walk 108 m farther. 
The regression line corresponding to this Equation isshown in Fig. 3. 
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We can now examine the correlation between the two variables, and whether it 
can be explained by chance. The correlation coefficient is 0.4, and, since p is 
0.0001, chance is a very unlikely explanation for this relation. Thus, we conclude 
that FEV1 explains or accounts for a statistically significant proportion of the 
variation in walk-test scores. 

We can also examine the relation between the walk-test score and the patients' 
sex (Fig. 4). Although there is considerable variation in scores among men and 
among women, men tend to have higher scores than women. If we had to predict a 
man's score, we would choose the mean score for the men (410 m), and we would 
choose the mean score for the women (363 m) to predict a woman's score. 

Is the apparent relation between sex and the walk-test score due to chance? One 
way of answering this question is to construct a simple regression Equation withthe 
walk-test score as the dependent variable and the sex of the patient as the 
independent variable. As it turns out, chance is an unlikely explanation of the 
relation between sex and the walk-test score (p = 0.0005). 

As these examples show, the independent variable in a regression Equation 
canbe an either/or variable, such as sex (male or female), which we call a 
dichotomous variable, or a variable that can theoretically take any value, such as 
FEV1, which we call a continuous variable. 

In Fig. 5 we have divided the men from the women, and for each sex we have 
separated the patients into groups with a high FEV1 and a low FEV1. Although 
there is still a range of scores within each of these four groups, the range is 
narrower. When we use the mean of any group as our best guess for the walk-test 
score of any member of that group, we will be closer to the true value than if we 
had used the mean for all patients. 

Fig. 5 illustrates how we can take into account more than one independent 
variable in explaining or predicting the dependent variable. We can construct a 
mathematical model that explains or predicts the walk-test score by simultaneously 
considering all of the independent variables; this is called a multivariate or 
multiple regression equation. 

We can learn several things from such an equation. First, we can determine 
whether the independent variables from the univariate equations each make 
independent contributions to explaining the variation. In this example, we consider 
first the independent variable with the strongest relation to the dependent variable, 
then the variable with the next strongest relation and so on. FEV1 and sex make 
independent contributions to explaining walk test (p < 0.0001 for FEV1 and p = 
0.03 for sex in the multiple regression analysis), but height (which was significant 

Page 6 of 16Ovid: Guyatt: Can Med Assoc J, Volume 152(4).February 15, 1995.497-504

10/05/02http://gateway1.ovid.com/ovidweb.cgi



at the p = 0.02 level when considered in a univariate regression) does not. 

If we had chosen the FEV1 and the peak expiratory flow rate as independent 
variables, they would both have shown significant associations with walk-test 
score. However, the FEV1 and the peak expiratory flow rate are very strongly 
associated with one another; therefore, they are unlikely to provide independent 
contributions to explaining the variation in walk-test scores. In other words, once 
we take the FEV1 into account, the peak flow rates are not likely to be of any help 
in predicting walk-test scores; likewise, if we first took the peak flow rate into 
account, the FEV1 would not provide further explanatory power in our model. 
Similarly, height was a significant predictor of walk-test score when considered 
alone, but it was no longer significant in the multiple regression because of its 
correlation with sex and FEV1. 

We have emphasized that the p value associated with a correlation provides little 
information about the strength of the relation between two values; the correlation 
coefficient is required. Similarly, the knowledge that sex and FEV1 independently 
explain some of the variation in walk-test scores tells us little about the power of 
our predictive model. We can get some sense of the model's predictive power from 
Fig. 5. Although the distributions of walk-test scores in the four subgroups differ 
appreciably, there is considerable overlap. The regression Equation cantell us the 
proportion of the variation in the dependent variable (that is, the differences in 
walk-test scores among patients) associated with each of the independent variables 
(sex and FEV1) and, therefore, the proportion explained by the entire model. In this 
case, the FEV1 explains 15% of the variation when it is the first variable entered 
into the model, sex explains an additional 2% of the variation once the FEV1 is in 
the model already, and the overall model explains 17% of the variation. We can 
therefore conclude that many other factors we have not measured (and perhaps 
cannot measure) determine how far people with long-term lung disease can walk in 
6 minutes. Other regression analyses have found that patients' experience of the 
intensity of their exertion as well as their perception of the severity of their illness 
may be more powerful determinants of walk-test distance than their FEV1 [6]. 

In this example, the dependent variable -- the walk-test score -- was continuous. 
Because this regression analysis assumes a straight-line fit between the 
independent and dependent variable, and the dependent variable is continuous, we 
refer to the analysis as "linear regression." In our next example, the dependent 
variable is dichotomous. Investigators sometimes use the term "logistic regression" 
to refer to such models because they are based on logarithmic equations. 

Predicting clinically important gastrointestinal bleeding  
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We have recently considered whether we could predict which critically ill 
patients were at risk of clinically important gastrointestinal bleeding [7]. In this 
example, the dependent variable was whether patients had had a clinically 
important bleed. When the dependent variable is dichotomous we use a logistic 
regression. The independent variables included whether patients were breathing 
independently or required ventilator support and the presence or absence of 
coagulopathy, sepsis, hypotension, hepatic failure and renal failure. 

In the study we followed 2252 critically ill patients and determined which of 
them had clinically important gastrointestinal bleeding. Table 1, which contains 
some of the results, shows that in univariate logistic regression analyses many of 
the independent variables were significantly associated with clinically important 
bleeding. For several variables, the odds ratio (discussed in a previous article in 
this series), which indicates the strength of the association, was large. However, 
when we constructed a multiple logistic regression equation, only two of the 
independent variables -- ventilator support and coagulopathy -- were significantly 
and independently associated with bleeding. All of the other variables that had 
predicted bleeding in the univariate analysis were correlated with either ventilation 
or coagulopathy and were not statistically significant in the multiple regression 
analysis. Of the patients who were not supported by a ventilator, 0.2% (3/1597) 
had an episode of clinically significant bleeding, whereas 4.6% (30/655) of those 
being supported by a ventilator had such an episode. Of those with no 
coagulopathy 0.6% (10/1792) had an episode of bleeding, whereas of those with 
coagulopathy 5.1% (23/455) had such an episode. 
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Table 1. Odds ratios and p values for risk factors for clinically important gastrointestinal bleeding in critically 
ill patients, calculated with use of simple and multiple logistic regression analysis 

Our main clinical interest was identification of a subgroup with a risk of 
bleeding low enough that prophylaxis could be withheld. In an analysis separate 
from the regression analysis, but suggested by its results, we divided the patients 
into two groups, those who were neither supported by a ventilator nor had 
coagulopathy, in whom the incidence of bleeding was only 0.14% (2/1405), and 
those who were either supported by a ventilator or had coagulopathy, of whom 
3.7% (31/847) had an episode of bleeding. Prophylaxis may reasonably be 
withheld from patients in the former group. 

CONCLUSION  

Correlation examines the strength of the relation between two variables, neither 
of which is necessarily considered the target variable. Regression examines the 
strength of the relation between one or more predictor variables and a target 
variable. Regression can be very useful in formulating predictive models such as 
the risk of myocardial infarction in patients presenting with chest pain, [8] the risk 
of cardiac events in patients undergoing noncardiac surgery, [9] or the risk of 
gastrointestinal bleeding in critically ill patients. Such predictive models can help 
us make clinical decisions. Whether you are considering a correlation between 
variables or a regression analysis, you should consider not only the statistical 
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significance of the relation but also its magnitude or strength, in terms of the 
proportion of variation explained by the model or the extent to which groups with 
very different risks can be specified. 

We thank Derek King, BMath, for conducting the original analyses reported in 
this article and for preparing the figures. 
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Figure 1. Scatterplot of the results of the 6-minute walk test and the cycle ergometer exercise test for 179 
patients. Each point gives the results for one patient 
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Figure 2. Distribution of 6-minute walk-test results in a sample of 219 patients 
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Figure 3. Scatterplot for the expiratory volume in 1 second and of the 6-mminute walk-test results for 219 
patients. Each point gives the results for one patient 
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Figure 4. Distribution of the 6-minute walk-test results in men (top) and women (bottom) from the sample of 
219 patients 
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Figure 5. Distribution of the 6-minute walk test results in men and women with high FEV, (top), and women 
with low FEV, (bottom) from the sample of 219 patients 
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